LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED

THIRD SEMESTER - APRIL 2023
MT 3203 - BUSINESS MATHEMATICS

Date: 12-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No. \square
Max. : 100 Marks

SECTION A

Answer ALL questions:

$(10 \times 2=20)$

1. Define total revenue function.
2. Find the equilibrium price by the method of demand given the functions:

$$
Q_{d}=50-\frac{8 p}{7} \text { and } Q_{s}=10+\frac{2 p}{3} .
$$

3. Find the differential coefficient e^{x} with respect to x.
4. If $u=x^{2} y^{3} z^{4}+6 x+7 y+9 z$ find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
5. Evaluate $\int\left(x^{2}+x\right) d x$
6. Integrate $\int_{0}^{1} \frac{1}{x^{2}} d x$.
7. Solve $\left|\begin{array}{lll}2 & 0 & 4 \\ 0 & 1 & 5 \\ 1 & 2 & 0\end{array}\right|$.
8. If $A=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$, then find A^{2}.
9. Resolve into partial fractions $\frac{1}{(x+1)(x+2)}$.
10. Define feasible solution of the linear programming problem.

SECTION B

Answer any FIVE questions:
11. If the demand law is $p=\frac{10}{(x+1)^{2}}$, find the elasticity of the demand in terms of x.
12. The total cost C for output x is given by $C=\frac{2}{3} x+\frac{35}{2}$. Find (i) Cost when output is 4 units (ii) Average cost when output is 10 units.
13. Differentiate $\frac{(x+1)(2 x-1)}{(x-3)}$ with respect to x.
14. If $y=x^{x^{x}}$, find $\frac{d y}{d x}$.
15. Find the maximum and minimum values of the function $\frac{2}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$.
16. Find consumer's surplus and producer's surplus for the demand curve $D(x)=16-x^{2}$ and the supply curve $S(x)=4+x$.
17. Find the adjoint of the matrix $A=\left(\begin{array}{ccc}1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & -3\end{array}\right)$
18. A manufacturer produces tubes and bulbs. It takes 1 hour of work on machine M and 3 hours of work on machine N to produce one package of bulbs while it takes 3 hours of work on machine M and 1 hour of work on machine N to produce a package of tubes. He earns a profit of Rs 12.50 per package of bulbs and Rs 5 per package of tubes. How many packages of each should he produced each day so as to maximize his profit if he operates the machine for at most 12 hours a day.

SECTION C

Answer any TWO questions:

19. If $A R$ and $M R$ denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{A R}{A R-M R}$. Verify this for the linear demand law $p=a+b x$.
20. (a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, show that $\left(1+x^{2}\right) y_{2}+x y_{1}=m^{2} y$.
(b) Evaluate $\int x^{2} e^{3 x} d x$.
21. Integrate $\int \frac{3 x-2}{\sqrt{4 x^{2}-4 x-5}} d x$.
22. (a) Prove that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(b) Solve the equations $5 x-6 y+4 z=15 ; 7 x+4 y-3 z=19 ; 2 x+y+6 z=46$ by inverse matrix method.
(10+10)
